配置网络带宽的一些棘手技能正在从利用新工具中获得帮助。人工智能和机器学习技术提供了可精确预测网络需求的能力。
网络容量规划旨在保证提供足够的带宽,从而可以可靠地满足网络sla目标,例如延迟、抖动、丢包和可用性。这是一个复杂的、容易出错的工作,涉及严重的财务负担。直到最近,可提供有洞察力的容量规划所需的网络数据才基本上可通过静态、历史和事后报告获得。这种情况现在正在迅速改变。
“通过将先进的数据科学和认知技术(如人工智能和机器学习)结合起来,it可以推动产生新的、更智能的预测性见解,从而提高网络容量规划的准确性,”德勤咨询公司负责认知分析的执行董事ashish verma说。“这有助于组织释放数据潜力,以制定更灵活的决策,提高运营智慧,避免停机,并创造更好的用户体验。”
尽管ai支持的网络容量规划仍处于初期阶段,但大多数容量规划供应商,包括cisco、netbrain、aria networks、flowmon和solarwinds等大型和小型企业,已经开始将某种形式的ai技术融入其产品中,或计划在不久的将来这样做。与此同时,如ibm watson 等技术供应商,也在寻求进入这一市场。
ai技术可支持传统的网络监控
商业咨询公司毕马威(kpmg)美国首席信息官咨询业务经理弗雷德里克?林斯特罗姆(fredrik lindstrom)指出,利用人工智能分析多个来源的数据,可提供比严格关注链路利用率的传统网络监控工具有更高的准确性。“ai还可以对不同性能场景进行建模,并将网络性能与应用程序性能联系起来,以确定应用程序在不同性能场景中受影响的程度。”
将ai驱动的机器学习技术应用于网络性能中,可以使网络控制器在增强网络性能的同时从经验中学习。
“随着其不断学习,它用于决策的分析模型得到了优化,可以更好地代表网络的真实意图及其业务目标,”思科公司(cisco)分析和机器学习学科专家杜瓦尔?耶格尔(duval yeager)表示。“随着网络的发展、变化以及应用程序和用户的增加,无论是本地还是云端,这都能提供准确的容量规划。”
人工智能和机器学习方法可以有效地应用于流量预报/预测、流量模式检测、在线学习和自动决策,卡内基梅隆大学(carnegie mellon university)泰珀商学院(tepper school of business)商业技术助理教授黄燕(yan huang)说道。
“高级机器学习算法可以将大规模和高度精细的网络数据作为输入,为网络中的每个节点生成精确的需求预测,并检测网络流量和利用率的跨期模式/趋势,”黄燕解释说。“流量和需求预测的改善将能够更准确地评估网络容量需求,并减少资源过度供应的需求。”
早期检测和发现跨期模式或网络流量的变化,可使组织能够采取主动措施来确保网络性能。 “复杂的预测模型可以与优化和/或模拟技术相结合,自动生成最佳的网络结构或其他结构以及相应的容量和资源规划,”黄燕说道。然后,可以根据组织最关心的特定性能指标来调整此类规划。
ai技术还可以根据实时网络状况处理实时流量数据,并动态制定路由和分配决策。“它还支持增量容量配置的按需模型,”黄燕解释道。所有这些因素都可以显着降低与网络发展、维护和改进相关的资本支出和运营支出,同时降低it专业人员管理此类活动所需的工作量。
一旦安装并正确配置后,网络ai技术就可以自动进行网络容量规划,同时考虑组织的财务和风险偏好。“人工智能可以实时或接近实时地分析许多不同的数据点,这对于企业迁移到涉及数据中心、云环境和广域网的虚拟化网络是至关重要的,”林斯特罗姆说。
ai还可用于以各种方式分析网络流量模式,帮助组织深入了解网络中正在运行的内容以及整体网络负载。
“这一细节对短期和长期容量规划都非常有用,”劳动力管理软件和服务提供商kronos的首席架构师兼网络和安全高级总监doug tamasanis解释道。
从短期来看,ai可以在极精细级别上来预测每日流量突发,例如应用程序、位置、技术和协议等。然后可以使用这些发现结果来防止高峰期的网络性能下降。“从长远来看,人工智能系统可以执行最佳容量规划,预测何时无法满足短期的流量突发,以及(何时)需要进行全面升级,”tamasanis指出。
基于ai的容量规划:入门
it资产和服务管理软件提供商ivanti的联邦系统工程师马塞尔?肖(marcel shaw)表示,开始使用基于ai的容量规划技术的最佳方式是获得一个成熟的技术,并且该技术已经取得一定程度的成功且得到企业的认可。
“同时,管理员应谨慎对待ai学习算法所提供的建议,”他说。“ai学习算法将在未来几年内得到大幅改善,因此客户在完全信任ai解决方案所推荐的容量需求之前,需要有耐心并允许ai技术逐渐成熟,这将是非常重要的。”
林斯特罗姆建议,在数据源和监控范围方面,从小规模着手。“至关重要的是,数据源可靠且一致,并且(ai)系统能够在至少一个完整的商业周期内生成基线,”他解释道。
tamasanis指出,将网络端口进行复制,并部署到关键网络设备,这是提供数据流的最佳方式,该数据流能够为分析平台提供数据。可以将特定系统(例如无线控制器、vpn集中器和防火墙)直接配置为流数据。“任何人工智能系统都需要这些类型的数据供应,而且网络的覆盖范围越大越好,”tamasanis说。“关键是要将最大量的数据提供给(ai)平台。”
在适当的环境中提供正确的数据也很重要。云计算平台开发商opsramp的工程总监murthy garikiparthi表示:“准备好数据,以便轻松获取解决方案,并确保该方案提供与您的目标相关的网络容量视图。”一旦建立了数据管道,并且速度和数据供应保持一致,该(ai)解决方案就可以开始监视特定行为的数据。“最后,一旦ai开始提出建议,it运营团队就可以依据这些见解来制定自动化策略,”garikiparthi建议道。
tamasanis强调了选择合适的ai平台的重要性。“有些平台更适合某些公司,”他指出。“这种自然的差异既是人工智能分析的一个吸引人的特征,也是一个有害的特征。”tamasanis还建议避免使用自动化配置。“虽然从反应时间上很有吸引力,但数据的错误解读可能会带来降低性能的效果,”他警告说。
对ai资源和准确性的误解
关于使用ai进行网络容量规划的最大误解可能是,该技术并不是特别耗费资源,特别是在人机交互方面。林斯特罗姆说,这种错觉“是由一些供应商所导致并加深的,他们会让你觉得,只要你安装这个工具,它就能完成所有工作,无需任何人管理。”
另一个误解是,基于ai的网络容量规划是一种全有或全无的游戏。耶格尔(yeager)建议,企业应该以分阶段的方式与供应商合作,以模块化的方式部署解决方案,并专注于价值最大的用例。鉴于许多未来的网络元素将基于云端并且依赖于订阅,这种方法尤其重要。“以分阶段的用例方式部署将保证it经理不会为尚未部署的服务和解决方案支付云订阅费用,”耶格尔解释说。
肖(shaw)说,关于使用ai进行容量规划的最大误解是,ai解决方案始终是准确的。“在ai解决方案成熟之前,管理员必须验证并质疑由ai驱动的容量规划解决方案所提供的建议,这是极为重要的。”
ai容量规划的缺陷
与任何新兴技术一样,ai容量规划也伴随着一些隐患,随时会摧毁那些无知和粗心大意的人。林斯特罗姆说,那些急于使用该技术的组织往往会做得过大、过快,并期望在系统没有进行任何精细调节的情况下立即获得结果。“如果系统没有足够的数据进行分析,或者数据不可靠或不一致,则这些工具将无法生成准确的网络状态或网络性能情况,”他警告说。
远离那些只提供不完整产品或服务的供应商,这也很重要。“当今市场上大多数解决方案只能为网络的一小部分提供巨大优势,却无法为有线、无线、设备、客户端、应用程序、安全、策略、跨域、广域网、云和数据中心提供完整的网络解决方案,”耶格尔指出。
使用不基于开放平台的ai产品和服务,将使面向智能的服务难以扩展到组织的其他部分。 “未来的运营将不再是相互孤立,各个部门将共享网络、服务、运营和使用数据,以增强企业范围内所有部门的能力,”耶格尔说。
由于人工智能是一项相对较新的技术,因此采用该技术的人经常会遇到来自保守管理者和员工的抵制,他们意图保护组织内的知识、旧的工作流程和自己的工作。“旧的做事方式不能过于僵化,以至于拒绝人工智能的好处。”garikiparthi警告说。
tamasanis说,ai只是提供了一个意见,而不是一个结论性的陈述。“将这样的工具与现有的网络设备和工程师整合起来,这将是一个渐进的过程。”